Tectoridins modulate skeletal and cardiac muscle sarcoplasmic reticulum calcium-release channels.

نویسندگان

  • K R Bidasee
  • A Maxwell
  • W F Reynolds
  • V Patel
  • H R Besch
چکیده

The isoflavones tectoridin (TTR) and 3'-hydroxy TTR (3'-TTR) were isolated from an Ayurvedic herbal preparation Vacä and evaluated for their affinity and effect on ryanodine receptors (RyR) using junctional sarcoplasmic reticulum vesicles (JSRVs). In [(3)H]ryanodine displacement binding affinity assays, TTR and 3'-TTR exhibited IC(50) values of 17.3 +/- 1.3 microM (K(d) = 6.7 +/- 0.4 microM) and 6.6 +/- 1.4 microM (K(d) = 2.4 +/- 0.2 microM), respectively, for fast skeletal muscle RyR (RyR1) compared with an IC(50) value for ryanodine of 6.2 +/- 0.4 nM (K(d) = 2.4 nM). TTR demonstrated a 3-fold higher affinity for cardiac RyR (RyR2) [IC(50) value of 5.2 +/- 0.6 microM (K(d) = 0.95 +/- 0.3 microM)] than for RyR1. The displacement isotherms for both TTRs paralleled that for ryanodine, consistent with the notion that all three are likely binding to similar site(s) on the receptors. Calcium efflux from and calcium influx into JSRVs were used to measure function effects of TTRs on binding to RyR. In calcium efflux assays, TTR (up to 1 mM) enhanced the release of (45)Ca(2+) from JSRVs in a concentration-dependent manner (EC(50act) of 750 microM). Higher concentrations deactivated (partially closed) RyR1. 3'-TTR had similar effects, but was approximately 2-fold more potent, exhibiting an EC(50act) value of 480 microM. Using passive calcium influx assays, TTR activated and deactivated RyR1 in a time- and concentration-dependent manner. The aglycone tectorigenin also was effective in displacing [(3)H]ryanodine from RyR1 but not from RyR2. These results demonstrate that TTRs are capable of interacting at ryanodine binding sites to differentially modulate fast skeletal and cardiac calcium-release channels.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calmodulin modulation of single sarcoplasmic reticulum Ca2+-release channels from cardiac and skeletal muscle.

Sarcoplasmic reticulum (SR) contains a Ca2+-conducting channel that is believed to play a central role in excitation-contraction coupling by releasing the Ca2+ necessary for muscle contraction. The effects of calmodulin on single cardiac and skeletal muscle SR Ca2+-release channels were studied using the planar lipid bilayer-vesicle fusion technique. Calmodulin inhibited Ca2+-release channel op...

متن کامل

Regulation of Ca2+ release from internal stores in cardiac and skeletal muscles.

It is widely accepted that Ca2+ is released from the sarcoplasmic reticulum by a specialized type of calcium channel, i.e., ryanodine receptor, by the process of Ca2+-induced Ca2+ release. This process is triggered mainly by dihydropyridine receptors, i.e., L-type (long lasting) calcium channels, directly or indirectly interacting with ryanodine receptor. In addition, multiple endogenous and ex...

متن کامل

Essential Roles of Intracellular Calcium Release Channels in Muscle, Brain, Metabolism, and Aging.

Calcium (Ca(2+)) release from intracellular stores controls numerous cellular processes, including cardiac and skeletal muscle contraction, synaptic transmission and metabolism. The ryanodine receptors (RyRs: RyR1, RyR2, RyR3) and inositol 1,4,5-trisphosphate receptors (IP3Rs: IP3R1, IP3R2, IP3R3) are the major Ca(2+) release channels (CRCs) on the endo/sarcoplasmic reticulum (ER/SR). RyRs and ...

متن کامل

Clinical implications of cardiac ryanodine receptor/calcium release channel mutations linked to sudden cardiac death.

The cardiac ryanodine receptor (RyR2) is the major calcium (Ca ) release channel on the sarcoplasmic reticulum (SR) in cardiomyocytes. During excitationcontraction, coupling intracellular Ca stored in the SR is released via RyR2 to activate muscle contraction. In the heart, excitation-contraction coupling is activated by Ca influx via the L-type Ca channel that activates RyR2, a process referre...

متن کامل

Developmental and tissue-specific regulation of rabbit skeletal and cardiac muscle calcium channels involved in excitation-contraction coupling.

Two types of calcium channels signal excitation-contraction (E-C) coupling in striated muscle: dihydropyridine receptors (DHPRs, voltage-gated L-type calcium channels on the transverse tubule) and ryanodine receptors (RyRs, calcium release channels on the sarcoplasmic reticulum). Sarcolemmal depolarization activates the DHPR; subsequently, the RyR is activated and releases calcium that activate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 293 3  شماره 

صفحات  -

تاریخ انتشار 2000